
266  |  Nature  |  Vol 576  |  12 December 2019

Article

Distributed coding of choice, action and 
engagement across the mouse brain

Nicholas A. Steinmetz1,3*, Peter Zatka-Haas2, Matteo Carandini1,4 & Kenneth D. Harris2,4

Vision, choice, action and behavioural engagement arise from neuronal activity that 
may be distributed across brain regions. Here we delineate the spatial distribution of 
neurons underlying these processes. We used Neuropixels probes1,2 to record from 
approximately 30,000 neurons in 42 brain regions of mice performing a visual 
discrimination task3. Neurons in nearly all regions responded non-specifically when 
the mouse initiated an action. By contrast, neurons encoding visual stimuli and 
upcoming choices occupied restricted regions in the neocortex, basal ganglia and 
midbrain. Choice signals were rare and emerged with indistinguishable timing across 
regions. Midbrain neurons were activated before contralateral choices and were 
suppressed before ipsilateral choices, whereas forebrain neurons could prefer either 
side. Brain-wide pre-stimulus activity predicted engagement in individual trials and in 
the overall task, with enhanced subcortical but suppressed neocortical activity during 
engagement. These results reveal organizing principles for the distribution of 
neurons encoding behaviourally relevant variables across the mouse brain.

Performing a perceptual decision involves processing sensory infor-
mation, selecting actions that may lead to reward, and executing these 
actions. It remains unknown how the neurons mediating these pro-
cesses are distributed across brain regions, and whether they rely on 
circuits that are shared or distinct. Most studies of action selection 
(hereafter referred to simply as choice) have focused on individual 
regions, such as frontal, parietal and motor cortex, basal ganglia, thala-
mus, cerebellum and superior colliculus4–11. However, neural correlates 
of movements, rewards, and other task variables have been observed 
in multiple brain regions, including in areas previously identified as 
purely sensory12–24. It is therefore possible that many brain regions 
also participate in action selection. Nevertheless, neuronal signals that 
correlate with action do not necessarily correlate with choice. To carry 
choice-related signals, a brain region must contain neurons whose fir-
ing selectively predicts the chosen action before the action occurs25.

Successful performance in a perceptual task depends not only on 
choosing the correct action, but also on choosing to engage in the task 
in the first place. Stimuli that drive actions during an engaged behav-
ioural state do not necessarily drive actions when disengaged; for exam-
ple, in contexts where the action will not lead to reward. Furthermore, 
even well-trained participants often show varying levels of behavioural 
engagement or vigilance within a task, resulting in varying probability 
of responding promptly and accurately to sensory stimuli26–28. At times 
of low engagement, stimuli arriving at the sense organs evidently fail 
to effectively drive the circuits responsible for selecting and initiating 
action. It remains unclear whether this context-dependent gating occurs 
globally29 or whether it involves multiple brain systems differentially30.

Brain-wide recording in visual behaviour
To determine the distribution of neurons encoding vision, choice, 
action, and behavioural engagement, we recorded neural activity across 

the brain while mice performed a task that enabled us to distinguish 
these processes (Fig. 1a–c). This task combines the advantages of two-
alternative forced choice and Go–NoGo designs3,31. On each trial, visual 
stimuli of varying contrast could appear on the left side, right side, both 
sides or neither side. Mice earned a water reward by turning a wheel with 
their forepaws to indicate which side had highest contrast (Fig. 1a–c). If 
neither stimulus was present, they earned a reward for making a third 
type of response: keeping the wheel still for 1.5 s. If left and right stimuli 
had equal non-zero contrast, the mice were rewarded randomly for left 
or right turns. The same visual stimulus could therefore lead to either 
direction of turn, or to no action, enabling us to dissociate the neural 
correlates of visual processing, of action initiation (turning the wheel 
versus holding it still) and of action selection (turning left versus right).

Mice performed the task proficiently (Fig. 1c, Extended Data Fig. 1). 
Their choices were most accurate when stimuli appeared on a single 
side at high contrast (1.7 ± 2.5% incorrect choices, defined as turns in 
the wrong direction; 10.1 ± 8.3% Misses, defined as failures to turn; 
mean ± s.d., n = 39 sessions, 10 mice). They performed less accurately in 
more challenging conditions: with low-contrast single stimuli (5.1 ± 6.4% 
incorrect choices; 29.8 ± 19.8% Misses); or with competing stimuli of 
similar but unequal contrast (20.0 ± 7.9% incorrect choices; 13.9 ± 11.7% 
Misses, on trials with high versus medium or medium versus low con-
trast). As expected in these more challenging cases, reaction times 
were longer (Fig. 1d; P < 10−4, multi-way ANOVA).

While mice performed the task, we used Neuropixels probes1,2 to record 
from approximately 30,000 neurons in 42 brain regions (Fig. 1e–j; abbre-
viations of brain regions are defined in Extended Data Table 1). Inserting 
two or three probes at a time in the left hemisphere yielded simultaneous 
recordings from hundreds of neurons in multiple regions during each 
recording session (n = 92 probe insertions over 39 sessions in 10 mice, 
Fig. 1h, i). We identified the firing times of individual neurons using Kilo-
sort32 and phy33, and determined their anatomical locations by combining 
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electrophysiological features with histological reconstruction of fluores-
cently labelled probe tracks (Fig. 1g, Extended Data Figs. 2, 3). Across all ses-
sions, we recorded from 29,134 neurons (n = 747 ± 38 neurons per session, 
mean ± s.e.), of which 22,458 were localizable to one of 42 brain regions.

Propagation of activity during the task
Trial onset was followed by increased average activity in nearly all 
recorded regions. A sizeable fraction of all neurons (60.0%, 13,466 

neurons) showed significant modulation of firing rate during the 
task (P < 0.05; Bonferroni-corrected test for six task epochs; Supple-
mentary Figs. 1, 2; Methods). Most of these neurons (74.3%) consist-
ently increased their activity during the task, but a sizeable minority 
(20.2%) consistently decreased their activity. Neurons were diverse in 
the timing of their activity during trials, with timing differences both 
within and between brain areas (Extended Data Fig. 4a, b); however, 
neuronal activity was detectable before the onset of wheel movement 
in most regions (Extended Data Fig. 4c, d). Similarly widespread 
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Fig. 1 | Brain-wide recordings during a task that distinguishes vision, choice 
and action. a, Mice earned water rewards by turning a wheel to indicate which of 
two visual gratings had higher contrast, or by not turning if no stimulus was 
presented. When stimuli had equal contrast, a left or right choice was rewarded 
with 50% probability. Grey rectangles indicate the three computer screens 
surrounding the mouse. Arrows (not visible to the mouse) indicate the rewarded 
wheel turn direction and the coupled movement of the visual stimulus (X 
indicates reward for no turn), and the coloured dashed circle (not visible to the 
mouse) indicates the stimulus location at which a reward was delivered.  
b, Timeline of the task. Mice were free to move as soon as the stimulus appeared, 
but the stimulus was fixed in place and rewards were unavailable until after an 
auditory tone cue. If no movement was made for 1.5 s after the tone cue, a NoGo 
was registered. The grey region is the analysis window, from 0 to 0.4 s after 
stimulus onset. CW, clockwise; ACW, anticlockwise. c, Average task 
performance across subjects; n = 10 mice, 39 sessions, 9,538 trials. Colour maps 
depict the probability of each choice given the combination of contrasts 
presented. d, Reaction time as a function of stimulus contrast and presence of 

competing stimuli. e, Mice were head-fixed with forepaws on the wheel while 
multiple Neuropixels probes were inserted for each recording. f, Frontal view of 
subject performing the behavioural task during recording, with forepaws on 
wheel and lick spout for acquiring rewards. g, Example electrode track histology 
with atlas alignment overlaid. h, Recording track locations as registered to the 
Allen Common Coordinate Framework 3D space. Each coloured line represents 
the span recorded by a single probe on a single session, coloured by mouse 
identity. D, dorsal; A, anterior; L, left. i, Summary of recording locations. 
Recordings were made from each of the 42 brain regions coloured on the top-
down view of cortex (left) and sagittal section (right). For each region, the 
number in parentheses indicates total recorded neurons. For abbreviations, see 
Extended Data Table 1. j, Spike raster from an example individual trial, in which 
populations of neurons were simultaneously recorded across visual and frontal 
cortical areas, hippocampus and thalamus. Brain diagrams were derived from 
the Allen Mouse Brain Common Coordinate Framework (version 3 (2017); 
downloaded from http://download.alleninstitute.org/informatics-archive/
current-release/mouse_ccf/).

http://download.alleninstitute.org/informatics-archive/current-release/mouse_ccf/
http://download.alleninstitute.org/informatics-archive/current-release/mouse_ccf/
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activity was observed following reward delivery (Extended Data 
Fig. 4e).

Examining rasters of individual neurons’ activity across trials 
revealed consistent correlates of action initiation, sensory stimuli or 
choices (Fig. 2a–c). For example, a neuron in the subiculum (Fig. 2a) 
produced no response to the visual stimuli, but consistently fired 
before wheel turns regardless of their direction. Such non-specific 
movement correlates were also often seen in neurons that produced 
sensory responses. For example, a neuron in visual cortex (Fig. 2b) 
showed activity following onset of visual stimulus that was selective 
for stimulus location but also fired following wheel turns, regardless 
of the subject’s choice (that is, direction of wheel turn). Neurons with 
choice-selective responses were rare but could be found in select nuclei: 
for example, a neuron in the zona incerta (ZI; Fig. 2c) showed no visual 
response but increased its firing rate before contralateral choices, with 
no response before or after ipsilateral choices.

Throughout the brain, most of the activity following trial onset 
reflected non-specific movement correlates (Fig. 2d–h). When a mouse 
successfully selected a visual stimulus contralateral to the recorded 
hemisphere, activity emerged first in classical visual regions such as 
visual cortex (VIS) and superficial superior colliculus (SCs), and soon 
spread to most of the remaining recorded regions (Fig. 2d). When 
the mouse successfully selected an ipsilateral stimulus, most areas 

were again activated, but VIS and SCs were now among the last areas 
to respond, rather than the first (Fig. 2e). When the mouse missed a 
contralateral stimulus, leading to no action, activity was found in a 
‘visual pathway’ consisting of classical visual areas, basal ganglia and 
several midbrain structures (Fig. 2f), but failed to propagate globally. 
When the mouse missed an ipsilateral stimulus, however, the recorded 
hemisphere remained largely silent (Fig. 2g). The widely distributed 
activity seen following trial onset was therefore present only when mice 
moved, regardless of the particular stimulus and particular action.

Outside of the task context, responses to visual stimuli were similar 
to those of Miss trials, but generally weaker (Fig. 2h). We measured 
activity in passive replay periods following task performance, when 
the same stimuli were presented without the opportunity to earn 
rewards. In these passive trials, the mice hardly ever turned the wheel 
(94.1% ± 0.6% of trials with high contrast stimuli had no movement). 
Stimuli contralateral to the recorded hemisphere gave rise to weak 
activity restricted to the visual pathway (Fig. 2h). No activity was seen 
on average following passive presentation of stimuli ipsilateral to the 
recorded hemisphere (not shown).

In sum, this analysis of average activity suggests that whereas 
responses to visual stimuli are largely confined to a restricted visual 
pathway, neural correlates of action initiation are essentially global. To 
assess the distribution of these signals at a finer scale and to search for 
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maps showing firing rates averaged over responsive neurons in each region 
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were matched between d, f and h so that differences in activity do not reflect 
differing visual drive. Subpanels to the right of each colour map represent the 
percentage of neurons in each area significantly more responsive during that 
condition than baseline (P < 10−4; see Methods).
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signals encoding choice, we next examined the activity of individual 
neurons.

Globally distributed action coding
To analyse the firing correlates of individual neurons, we used an 
approach based on kernel fitting (Extended Data Fig. 5). We fit the 
activity of each neuron with a sum of kernel functions time-locked 
to stimulus presentation and to movement onset. We fit six stimu-
lus-locked kernels—one for each of three possible contrast values on 
each side (‘Vision’ kernels), which captured variations in amplitude 
and timing of the visual activity driven by different stimuli. We fit two 
movement-locked kernels: an ‘Action’ kernel triggered by a movement 
in either direction and a ‘Choice’ kernel capturing differences in activity 
between left and right movements.

To determine which neurons encoded vision, action and choice, we 
used a nested test: we fit a model including all kernels except the one to 
be tested and determined whether adding the test kernel improved the 
model’s prediction of held-out data. Applying this test to the example 
neurons from before, we find that this method succeeded in quantifying 
the contralateral visual stimulus (Fig. 3a) and action (Fig. 3b) correlates 
inferred from examining each trial type (compare with Fig. 2a, b). In 
determining whether a neuron passed this test, we used parameters 
that gave false-positive error rates of 0.33% on shuffled data (Extended 
Data Fig. 5h). As our question concerns activity predictive of upcoming 
movements, we applied this analysis only to pre-movement activity. 
Consistent with its raster plot (Fig. 2a), the example subicular neuron 
examined earlier required only an Action kernel, indicating entirely 
non-selective action correlates (Fig. 3b). By contrast, the example 
visual cortical neuron (Fig. 2b) required only Vision kernels (Fig. 3a), 
indicating that it had exclusively visual correlates before action initia-
tion. The fraction of cross-validated variance explained by the kernels 
was frequently small (Fig. 3c, Extended Data Fig. 6a), even for neurons 
whose mean rates they accurately predicted (50.2% for the neuron in 
Fig. 3a and 13.6% for the neuron in Fig. 3b), as expected from trial-to-trial 
variability and encoding of task-independent variables14,34.

Neurons encoding vision (that is, requiring Vision kernels) were 
found in a pathway comprising primarily classical visual areas (Fig. 3d, 
f). They were common in VIS, thalamus and superficial superior col-
liculus (SCs), but were also occasionally present in other structures 
such as frontal cortex (MOs, ACA and PL), basal ganglia (CP, GPe and 
SNr), and several midbrain nuclei (SCm, MRN, APN and ZI; Fig. 3d, f, 
Extended Data Fig. 6a; brain regions are listed in Extended Data Table 1).

By contrast, neurons encoding action (requiring an Action kernel) 
were spread throughout all recorded regions (Fig. 3e, g). The distribu-
tion of these neurons encoding action was significantly broader than 
that of neurons encoding visual stimuli (Extended Data Fig. 4f). A large 
majority of neurons encoding action did not require an additional 
Choice kernel—they responded equally for movements in either direc-
tion. The rare exceptions requiring a Choice kernel are discussed next.

Choice coding in forebrain and midbrain
Neurons encoding specific choices were found in a small subset of brain 
regions (Fig. 4a, b). We identified choice-selective neurons as neurons 
for which the Choice kernel was required to explain their activity in 
the nested test described above. These neurons were rare and were 
distributed across frontal cortex (MOs, PL and MOp), basal ganglia (CP 
and SNr), higher-order thalamus and motor-related superior colliculus 
(SCm), as well as in two unexpected subcortical nuclei, the midbrain 
reticular nucleus and ZI (Fig. 4b). This set of regions encoding choice 
overlapped partially with the visual pathway—both included frontal cor-
tex, basal ganglia and several midbrain structures, but choice-selective 
neurons were not found in VISp. Neurons encoding choice were again 
significantly more localized than neurons encoding action (Extended 

Data Fig. 4f). To further confirm these conclusions, we developed a 
version of choice-probability analysis for tasks with many stimulus 
conditions, called ‘combined-conditions choice probability’ (Methods). 
This statistic quantifies the probability that a neuron’s spike count 
will be greater on trials with one choice than with other choices, for 
matched stimulus conditions as in classical choice probability. This 
analysis produced similar results (Extended Data Fig. 7).

Across choice-encoding regions, choice signals emerged with similar 
timing (Fig. 4c, d). We trained a decoder to predict the subject’s choice 
from recorded population activity after first subtracting the prediction 
of population activity from the Vision and Action kernels (to yield a 
decoding of choice isolated from visual and non-specific action sig-
nals). This population-level decoding identified similar areas encoding 
each variable as did the individual neuron decoding (Extended Data 
Fig. 5g), and we found that the time course of choice decoding was 
not significantly different across choice-selective regions in frontal 
cortex, striatum and midbrain (two-way ANOVA on brain region and 
time, interaction P > 0.05; Fig. 4c). We validated this conclusion using 
joint peri-event canonical correlation ( jPECC) analysis, an extension of 
the ‘joint peristimulus time histogram’ method35,36, modified to detect 
correlations in a ‘communication subspace’37 between two populations. 
Whereas jPECC analysis revealed a consistent time lag for activity cor-
relations between visual and frontal cortex (and between visual cortex 
and midbrain choice areas), it revealed no lag for activity correlations 
between frontal and midbrain areas (Fig. 4d, Extended Data Fig. 8).

Although the encoding of choice emerged with indistinguishable 
timing in midbrain and forebrain, these regions encoded choice dif-
ferently (Fig. 4e–h). In midbrain (MRN, SCm, SNr and ZI), nearly all 
choice-selective neurons (53 out of 54, 98%) preferred contralateral 
choices (Fig. 4e, top and Fig. 4f). By contrast, choice-selective neurons 
in forebrain (MOs, PL, MOp and CP) could prefer either choice, with a 
sizeable proportion preferring ipsilateral choices (19 out of 48, 40%), 
significantly more than in the midbrain (P < 10−5, Fisher’s exact test; 
Fig. 4e, bottom and Fig. 4g). Moreover, many midbrain choice-selec-
tive neurons exhibited directionally opposed activity: their activity 
increased before one choice and decreased below baseline before the 
other (29 out of 54, 54%; note points to the left of x = 0 in Fig. 4f). By 
contrast, neurons in the forebrain typically increased firing before both 
left and right choices (10 out of 48, 21% suppressed for non-preferred 
choice, significantly less than in the midbrain; P < 10−3, Fisher’s exact 
test; Fig. 4g). Neurons encoding choice, therefore, exhibit a distinctive 
bilateral encoding of both choices in the forebrain, versus a unilateral 
encoding of contralateral choices in the midbrain (Fig. 4h).

Distributed coding of task engagement
We next investigated whether engagement in a trial or in the overall task 
corresponded to characteristic patterns of brain activity. We reasoned 
that Go trials (when the mouse made a left or right choice), Miss trials 
and passive visual responses (measured outside the task) might repre-
sent three points along a continuum corresponding to progressively 
lower levels of task engagement.

We began by comparing two conditions in which visual stimuli and 
behavioural reports were identical: passive visual responses measured 
outside the task, and responses on Miss trials during the task (Fig. 5a–c). 
Even though the two conditions were matched for visual stimulation 
and (lack of) action, they were accompanied in many areas by different 
activity, both before and after stimulus presentation (Fig. 5a, Extended 
Data Fig. 6b). Consistent with the average firing rates presented earlier 
(Fig. 2f, h), more neurons were significantly activated by visual stimuli 
during the task (Miss trials), than during passive stimulation (Fig. 5b). 
Differences were also seen in pre-stimulus firing rates; for instance, 
pre-stimulus activity in VISp was lower in the task (Miss trials) than 
during passive stimulation, whereas pre-stimulus activity in CP showed 
the opposite modulation (Fig. 5a). Whereas neocortex and sensory 
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thalamus showed a net decrease in pre-stimulus activity during task 
context, other regions—including basal ganglia and other subcortical 
choice-encoding areas—showed a consistent increase (Fig. 5c, Extended 
Data Fig. 9a). This effect extended to neurons that were not otherwise 
responsive during the task (Supplementary Fig. 3).

Consistent with the hypothesis of a continuum of engagement across 
passive, Miss and Go trials, the pattern of firing accompanying task 
engagement predicted successful performance on individual trials 
(Fig. 5d–f). For this analysis, we examined only pre-stimulus activity, 
which could not be conflated with the large non-specific responses 
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excluding the contralateral Vision kernels, indicating that this neuron has 
stimulus-locked activity that cannot be explained by other variables. b, Similar 
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the Allen Mouse Brain Common Coordinate Framework (version 3 (2017); 
downloaded from http://download.alleninstitute.org/informatics-archive/
current-release/mouse_ccf/).
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related to movements. Regions that showed differences in pre-stimulus 
firing rate between task and passive contexts also showed similar dif-
ferences between Go and Miss trials (Fig. 5d). Indeed, it was possible to 
predict whether a mouse would respond to the stimulus on a given trial 
from the ‘engagement index’, a projection of pre-stimulus population 
activity onto the axis defined by the difference of pre-stimulus activity 
in passive and task contexts (Fig. 5e). This engagement index consist-
ently differed between Go and Miss trials across recordings (Fig. 5f; 
paired t-test, P < 10−4), an effect that could not be fully explained by 
variability in pupil diameter, in overt movements detectable by video 
recordings, in the presence of a reward on the previous trial, or in the 

inter-trial interval (Extended Data Fig. 9b–k). This index is therefore 
distinguishable from correlates of movement, reward and arousal, 
and represents a specific brain-wide neural signature of engagement.

Discussion
Using brain-wide recordings of neuronal populations, we revealed 
organizing principles of the distribution of neurons carrying distinct 
correlates of a visual choice behaviour. Neurons non-selectively encod-
ing action are widely distributed. Neurons encoding choice are rarer, 
are less widely distributed, and exhibit unilateral encoding in midbrain 
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cross-validated fits of the kernel model using all kernels (solid lines), and fits 
using all kernels except Choice (dashed lines). The VISp neuron can be 
accurately predicted without the Choice kernel, indicating that the differing 
responses between left and right choices can be explained by visual responses. 
The other three neurons cannot be predicted without the Choice kernel. The ZI 
neuron also appeared in Fig. 2c. b, Fraction of neurons in each brain region for 
which accurate prediction required the Choice kernel (false-positive rate on 
shuffled data, 0.3%). Empty bars indicate areas for which the number of 
neurons passing analysis criteria was less than 5. c, Time courses of population 
decoding of choice from frontal cortex (MOs, MOp and PL), striatum (CP), and 
midbrain (MRN, SCm, ZI and SNr) did not significantly differ (P > 0.05, two-way 
ANOVA). Shaded regions, s.e.m. across recordings. d, Left, jPECC analysis 

shows that population activity in visual cortex predicts that in frontal cortex 
following a lag of about 40 ms, but only in the period about 200 ms before 
movement. Right, population activity in midbrain and frontal cortex do not 
show a consistent lead–lag relationship. e, Trial-averaged firing rates of 
example neurons recorded in the midbrain (top row) and forebrain (bottom 
row) aligned to contralateral (orange) and ipsilateral choices (blue). f, g, Scatter 
plot of activity of individual midbrain and forebrain neurons at movement 
onset relative to baseline activity, for trials with contralateral versus ipsilateral 
choices (estimated from the kernel model). Darker points represent neurons 
with significant choice encoding. h, Summary of f and g on a brain map. Red and 
tan indicate regions containing neurons of unilateral or bilateral selectivity. 
Brain diagrams were derived from the Allen Mouse Brain Common Coordinate 
Framework (version 3 (2017); downloaded from http://download.
alleninstitute.org/informatics-archive/current-release/mouse_ccf/).
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and bilateral encoding in forebrain regions. Correlates of engagement 
are characterized by enhanced subcortical activity and suppressed 
neocortical activity.

Neurons with action correlates are found globally: neurons in nearly 
every brain region were non-selectively activated in the moments 
leading up to movement onset. This global representation of action 
is consistent with reports of widespread action correlates in multiple 
species14,34,38, and suggests that non-specific action correlates may in 
fact be ubiquitous in the mouse brain, cortically and subcortically. These 
signals may comprise forms of corollary discharge39, but cannot reflect 
sensory re-afference as they were observed before movement onset. 
Global non-selective action correlates may underlie brain-wide task-
related activity observed in rodents29 and humans23. This ubiquitous 
presence of non-selective action correlates underscores the advantage 
of multi-alternative tasks for revealing the neural correlates of behav-
ioural choice: Go–NoGo tasks cannot distinguish neurons that fire non-
specifically for any action from neurons selective for specific choices.

The set of regions encoding choice is spatially restricted and is 
characterized by qualitatively distinct midbrain and forebrain com-
ponents. It includes many of the regions classically implicated in choice 
behaviour including frontal cortex5, striatum6, substantia nigra pars 
reticulata7 and the deep layers of the superior colliculus8,40, but also 

unexpected regions including the midbrain reticular nucleus and 
zona incerta. These regions also contained neurons encoding visual 
stimuli, even during passive stimulus presentation; whether visual 
neurons would be found in these ‘motor’ areas in untrained animals is 
not clear from these data. Our analyses revealed a striking anatomical 
organizing principle: choice neurons in the forebrain (neocortex and 
striatum) are enhanced before both contra- and ipsilateral choices 
and can prefer either, but choice neurons in the midbrain are almost 
exclusively enhanced for contralateral choices and often suppressed 
for ipsilateral choices. Despite this distinct encoding, we could not 
distinguish the timing of choice-related signals between these regions, 
an observation parsimoniously explained by a recurrent loop across 
them (Supplementary Discussion; Supplementary Fig. 4a).

Brain-wide correlates of engagement are characterized by enhanced 
subcortical activity and suppressed neocortical activity before onset of 
visual stimulus. Engagement-related cortical suppression might seem 
surprising given that visual cortex is required for performance of this 
task3,41. However, increased arousal has been associated with reduced 
spiking activity and hyperpolarization in multiple cortical areas42,43, an 
effect that may improve signal-to-noise ratios of sensory representa-
tions. Enhanced activity in subcortical areas, by contrast, brings activ-
ity in these regions closer to the level at which actions are initiated, 
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providing a potential mechanism for increased probability of action in 
engaged states (Supplementary Discussion; Supplementary Fig. 4b–d).

In summary, we have identified organizing principles for the distri-
bution and character of the neuronal correlates of a lateralized visual 
discrimination task across the mouse brain. Future work will be required 
to determine the circuit mechanisms that enforce these principles, how 
they extend to areas such as cerebellum and brainstem omitted from 
the current survey, and the degree to which similar principles govern 
the neural correlates of different choice tasks.
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Methods

Experimental procedures were conducted according to the UK Ani-
mals Scientific Procedures Act (1986) and under personal and project 
licenses released by the Home Office following appropriate ethics 
review.

Mice
Experiments were performed on 10 male and female mice, between 
11 and 46 weeks of age (Supplementary Table 1). Multiple genotypes 
were used, including: Ai95;Vglut1-Cre (B6J.Cg-Gt(ROSA)26Sortm95.1(CAG-

GCaMP6f)Hze/MwarJ crossed with B6;129S-Slc17a7tm1.1(cre)Hze/J), TetO-G6 
s;Camk2a-tTa (B6;DBA-Tg(tetO-GCaMP6 s)2Niell/J crossed with B6.Cg-
Tg(Camk2a-tTA)1Mmay/DboJ), Snap25-G6 s (B6.Cg-Snap25tm3.1Hze/J), 
Vglut1-Cre, and wild-type (C57Bl6/J). None of these lines are known to 
exhibit aberrant epileptiform activity44. Of 13 mice initially trained for 
inclusion in this study, three developed health complications before 
training completed and were not recorded. The other 10 successfully 
learned the task (see criteria below) and were included. The sample 
sizes (n = 10 mice; n = 39 recording sessions; n = 29,134 neurons) were 
not determined with a power analysis.

Surgery
A brief (around 1 h) initial surgery was performed under isoflurane 
(1–3% in O2) anaesthesia to implant a steel headplate (approximately 15 
× 3 × 0.5 mm, 1 g) and, in most cases, a 3D-printed recording chamber. 
The chamber was a semi-conical, opaque piece of polylactic acid with 
a 12 mm diameter upper surface and a lower surface designed to fit to 
the shape of an average mouse skull, exposing approximately the area 
from 3.5 mm anterior to 5.5 mm posterior to bregma, and 4.5 mm left to 
4.5 mm right, and narrowing near the eyes. The implantation method 
largely followed the method of Guo et al.45 with some modifications and 
was previously described44. In brief, the dorsal surface of the skull was 
cleared of skin and periosteum and prepared with a brief application 
of green activator (Super-Bond C&B, Sun Medical). The chamber was 
attached to the skull with cyanoacrylate (VetBond; World Precision 
Instruments) and the gaps between the cone and the skull were filled 
with L-type radiopaque polymer (Super-Bond C&B). A thin layer of 
cyanoacrylate was applied to the skull inside the cone and allowed to 
dry. Thin layers of UV-curing optical glue (Norland Optical Adhesives 
#81, Norland Products) were applied inside the cone and cured until 
the exposed skull was covered. The head plate was attached to the 
skull over the interparietal bone with Super-Bond polymer, and more 
polymer was applied around the headplate and cone.

After recovery, mice were given three days to recover while being 
treated with carprofen, then acclimated to handling and head-fixation 
before training.

Two-alternative unforced choice task
The two-alternative unforced choice task design was described pre-
viously3. Mice sat on a plastic apparatus with forepaws on a rotating 
wheel surrounded by three computer screens (Adafruit, LP097QX1) 
at right angles covering 270 × 70 degrees of visual angle (d.v.a.). Each 
screen was roughly 11 cm from the mouse’s eyes at its nearest point and 
refreshed at 60 Hz. The screens were fitted with Fresnel lenses (Wuxi 
Bohai Optics, BHPA220-2-5) to ameliorate reductions in luminance and 
contrast at larger viewing angles near their edges, and these lenses 
were coated with scattering window film (‘frostbite’, The Window 
Film Company) to reduce reflections. The wheel was a ridged rubber 
Lego wheel affixed to a rotary encoder (Kubler 05.2400.1122.0360). A 
plastic tube for delivery of water rewards was placed near the subject’s 
mouth. Licking behaviour was monitored by attaching a piezo film 
(TE Connectivity, CAT-PFS0004) to the plastic tube and recording 
its voltage. Experiments were run with Rigbox software for MAT-
LAB (Mathworks, Inc.)46. Full details of the experimental apparatus 

including detailed parts list can be found at http://www.ucl.ac.uk/
cortexlab/tools/wheel.

A trial was initiated after the subject had held the wheel still for a 
short interval (duration uniformly distributed between 0.2–0.5 s on 
each trial; Fig. 1b). At trial initiation, visual stimuli were presented at 
the centre of the left and right screens, or directly left and right of the 
subject. These stimulus locations were in the central of the monocular 
zones of the mouse’s visual field so that no eye or head movements 
were required for the mice to see them. The stimulus was a Gabor patch 
with orientation 45°, sigma 9 d.v.a., and spatial frequency 0.1 cycles 
per degree. After stimulus onset there was a random delay interval of 
0.5–1.2 s, during which time the subject could turn the wheel without 
penalty, but visual stimuli were locked in place and rewards could not 
be earned. The mice nevertheless typically responded immediately to 
the stimulus onset. At the end of the delay interval, an auditory tone 
cue was delivered (8 kHz pure tone for 0.2 s) after which the visual 
stimulus position became coupled to movements of the wheel. Wheel 
turns in which the top surface of the wheel was moved to the subject’s 
right led to rightward movements of stimuli on the screen, that is, a 
stimulus on the subject’s left moved towards the central screen. Put 
another way, clockwise turns of the wheel, from the perspective of the 
mouse, led to clockwise movement of the stimuli around the subject. 
A left or right turn was registered when the wheel was turned by an 
amount sufficient to move the visual stimuli by 90 d.v.a. in either direc-
tion (approximately 20 mm of movement of the surface of the wheel). 
When at least one stimulus was presented, the subject was rewarded 
for driving the higher contrast visual stimulus to the central screen (if 
both stimuli had equal contrast, left and right turns were rewarded 
with 50% probability). When no stimuli were presented, the subject 
was rewarded if no turn was registered during the 1.5 s following the 
Go cue. There were therefore three trial outcomes that could lead to 
reward depending on the stimulus condition (left turn, right turn, no 
turn), and in this sense the task was a three-alternative task. Immediately 
following registration of a choice or expiry of the 1.5 s window, feedback 
was delivered. If correct, feedback was a water reward (2–3 µl) delivered 
by the opening of a valve on the water tube for a calibrated duration. If 
incorrect, feedback was a white noise sound played for 1 s. During the 1 
s feedback period, the visual stimulus remained on the screen. After a 
subsequent inter-trial interval of 1 s, the mouse could initiate another 
trial by again holding the wheel still for the prescribed duration.

Trials of different contrast conditions were randomly interleaved. 
The experimenter was not blinded to contrast condition either during 
data acquisition or during analysis.

Training protocol
Mice were trained on this task with the following shaping protocol. First, 
high-contrast stimuli (50 or 100%) were presented only on the left or 
the right, with an unlimited choice window, and repeating trial condi-
tions following incorrect choices (‘repeat on incorrect’). Once mice 
achieved high accuracy and initiated movements rapidly—approxi-
mately 70 or 80% performance on non-repeat trials, and with reaction 
times nearly all <1 s, but at the experimenter’s discretion—trials with 
no stimuli were introduced, again repeating on incorrect. Once sub-
jects responded accurately on these trials (70 or 80% performance, 
at experimenter’s discretion), lower contrast trials were introduced 
without repeat on incorrect. Finally, contrast comparison trials were 
introduced, starting with high versus low contrast, then high versus 
medium and medium versus low, then trials with equal contrast on both 
sides. The final proportion of trials presented was weighted towards 
easy trials (high contrast versus zero, high versus low, medium versus 
zero, and no-stimulus trials) to encourage high overall reward rates 
and sustained motivation.

On most trials for which subjects eventually made a left or right 
turn by the end of the trial, the subjects responded immediately to 
the stimulus presentation, turning the wheel within 400 ms of stimulus 
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appearance (64.9 ± 14.0% (mean ± s.d.), n = 39 sessions), nearly always 
in the same direction as their final choice (96.6 ± 3.4%). For this study, 
data analyses focused on this initial 400 ms period, and we defined 
left and right choice trials as those in which this period contained the 
onset of a clockwise or counterclockwise turn of sufficient amplitude 
(90 d.v.a.), and NoGo trials as those in which it contained no detectable 
movement. To exclude trials in which wheel turns were coincidentally 
made before subjects could respond to the stimuli, only trials with 
movement onset between 125 to 400 ms post-stimulus onset, or with 
no movement of any kind during the window from −50 to 400 ms post-
stimulus onset, were included. Trials with other movements, that were 
detectable but would not have resulted in registering a choice by the 
end of the movement, were excluded.

The algorithm for detecting wheel movement onsets (‘find-
WheelMoves3’, https://github.com/cortex-lab/wheelAnalysis/blob/
master/+wheel/findWheelMoves3.m) was designed to identify the 
earliest moment at which the wheel began detectably moving. First, 
non-movement periods were identified as those which had less than 
1.1 mm of wheel movement over 0.2 s duration. Next, a morphological 
closure (dilation then erosion) of these periods was performed with size 
0.1 s to remove gaps smaller than this. Finally, the timing of the ends 
of the non-movement periods were refined by looking sequentially 
backwards in time to identify the first moment at which the position 
deviated by more than a smaller threshold of 0.2 mm. The double-
threshold procedure (first 1.1 mm, then looking backwards for 0.2 mm) 
was necessary because 0.2 mm is just two units of the rotary encoder’s 
measurement, and these two-unit steps could happen owing to noise 
at any time. In this way, the movement onsets (and consequently the 
reaction times) were measured at the resolution of the rotary encoder. 
Smaller detection thresholds would lead to earlier detection of wheel 
turns, but potentially at the risk of false-positive detections. To assess 
how our detector performed, we decoded the subject’s choice from the 
instantaneous wheel velocity (difference in wheel position between t 
and t-10 ms) at different times relative to detected movement onset 
(Extended Data Fig. 1q). The decoder performed essentially at chance 
50 ms before movement onset (47.7%) compared to near perfect per-
formance 50 ms after movement onset (94.6%).

Behavioural trials when the mouse was disengaged were excluded 
from analysis. These trials were defined as Miss trials (stimulus present 
but wheel not turned) preceded by two or more other Miss trials, as 
well as all NoGo trials occurring consecutively at the end of the session.

When analysing activity following reward delivery (Extended Data 
Fig. 4e), only correct NoGo trials were included, that is, trials with no 
visual stimulus and no wheel movement.

Sessions were included when at least 12 trials of each type (left, right 
and NoGo) could be included for analysis, and when anatomical locali-
zation was sufficiently confident (see below).

For analyses requiring matching stimulus contrasts across trials with 
different choices, we considered all trials with contralateral stimulus 
contrast greater than zero, and split them by low, medium, and high 
contralateral contrast. For each contrast level, we counted the number 
of trials with that contrast and each response type (left or right; NoGo; 
or passive condition). We took the minimum of these three numbers, 
and selected that many trials randomly from each group. This resulted 
in three sets of trials—trials with left or right choices; trials with NoGos; 
and trials in the passive condition—which each contained low, medium 
and high contralateral contrasts but which all contained exactly the 
same numbers of each contrast. When fewer than 10 such trials could 
be found, the session was excluded for the matched-contrast analyses 
(n = 34 of 39 sessions included).

Video monitoring
Eye and body movements were monitored by illuminating the subject 
with infrared light (830 nm, Mightex SLS-0208-A). The right eye was 
monitored with a camera (The Imaging Source, DMK 23U618) fitted 

with zoom lens (Thorlabs MVL7000) and long-pass filter (Thorlabs 
FEL0750), recording at 100 Hz. Body movements were monitored 
with another camera (same model but with a different lens, Thorlabs 
MVL16M23) situated above the central screen, recording at 40 Hz.

Neuronal recordings
Recordings were made using Neuropixels (Phase3A Option 3) electrode 
arrays1, which have 384 selectable recording sites out of 960 sites on a 
1-cm shank. Probes were mounted to a custom 3D-printed polylactic 
acid piece and affixed to a steel rod held by a micromanipulator (uMP-4, 
Sensapex Inc.). To allow later track localization, before insertion probes 
were coated with a solution of DiI (ThermoFisher Vybrant V22888 or 
V22885) by holding 2µl in a droplet on the end of a micropipette and 
touching the droplet to the probe shank, letting it dry, and repeating 
until the droplet was gone, after which the probe appeared pink.

On the day of recording or within two days before, mice were briefly 
anaesthetized with isoflurane while one or more craniotomies were 
made, either with a dental drill or a biopsy punch. After at least three 
hours of recovery, mice were head-fixed in the setup. Probes had a 
soldered connection to short external reference to ground; the ground 
connection at the headstage was subsequently connected to an Ag/AgCl 
wire positioned on the skull. The craniotomies as well as the wire were 
covered with saline-based agar. The agar was covered with silicone oil to 
prevent drying. In some experiments, a saline bath was used rather than 
agar. Two or three probes were advanced through the agar and through 
the dura, then lowered to their final position at approximately 10 µm s−1. 
Electrodes were allowed to settle for around 15 min before starting 
recording. Recordings were made in external reference mode with local 
field potential gain = 250 and action potential gain = 500. Recordings 
were repeated at different locations on each of multiple subsequent 
days (Supplementary Table 2), performing new craniotomy proce-
dures as necessary. All recordings were made in the left hemisphere. 
The ability of a single probe to record from multiple areas, and the 
use of multiple probes simultaneously, led to a number of areas being 
recorded simultaneously in each session (Supplementary Table 3).

Passive stimulus presentation
After each behaviour session, we performed a passive replay experi-
ment while continuing to record from the same electrodes. Mice were 
presented with two types of sensory stimuli without possibility of 
receiving reward for any behaviour: replay of task stimuli; and sparse 
flashed visual stimuli for receptive field mapping.

The replayed task stimuli were: left and right visual stimuli of each 
contrast; some combinations of left and right visual stimuli simultane-
ously; Go cue beeps; white noise bursts; and reward valve clicks (but 
with a manual valve closed so that no water was delivered). These stimuli 
were replayed at 1–2 s randomized intervals for 10 or 25 randomly inter-
leaved repetitions each.

Receptive fields were mapped with white squares of 8 d.v.a. edge 
length, positioned on a 10 × 36 grid (some stimulus positions were 
located partially off-screen) on a black background. The stimuli were 
shown for 10 monitor frames (167 ms) at a time, and their times of 
appearance were independently randomly selected to yield an aver-
age rate of approximately 0.12 Hz.

Data analysis
The data were automatically spike sorted with Kilosort32 (https://github.
com/cortex-lab/Kilosort) and then manually curated with the phy GUI 
(https://github.com/kwikteam/phy). Extracellular voltage traces were 
preprocessed with common-average referencing47: subtracting each 
channel’s median to remove baseline offsets, then subtracting the 
median across all channels at each time point to remove artefacts. 
During manual curation, each set of events (unit) detected by a par-
ticular template was inspected and if the events comprising the unit 
were judged to correspond to noise (zero or near-zero amplitude; 
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non-physiological waveform shape or pattern of activity across chan-
nels) rather than spikes, the entire unit was discarded. Units containing 
low-amplitude spikes, spikes with inconsistent waveform shapes, and/
or refractory period contamination were labelled as ‘multi-unit activity’ 
and not included for further analysis. Finally, each unit was compared to 
similar, spatially neighbouring units to determine whether they should 
be merged, on the basis of spike waveform similarity, drift patterns or 
cross-correlogram features. Units were also excluded if their average 
rate in the analysis window (stimulus onset to 0.4 s after; trial firing 
rate) was less than 0.1 Hz. Units passing these criteria were considered 
to reflect the spiking activity of a neuron.

Neurons were only included for further analysis when at least 13 
neurons passing the above criteria were identified as coming from the 
same brain region, in the same experiment. Furthermore, brain regions 
were only included for which recordings from at least two subjects had 
sufficient numbers of neurons.

To determine whether a neuron’s firing rate was significantly modu-
lated during the task (Supplementary Fig. 1), a set of six statistical tests 
were used to detect changes in activity during various task epochs 
and conditions: (1) Wilcoxon sign-rank test between trial firing rate 
(rate of spikes between stimulus onset and 400 ms post-stimulus) 
and baseline rate (defined in period −0.2 to 0 s relative to stimulus 
onset on each trial); (2) sign-rank test between stimulus-driven rate 
(firing rate between 0.05 and 0.15 s after stimulus onset) and baseline 
rate; (3) sign-rank test between pre-movement rates (−0.1 to 0.05 s 
relative to movement onset) and baseline rate (for trials with move-
ments); (4) Wilcoxon rank-sum test between pre-movement rates on left 
choice trials and those on right choice trials; (5) sign-rank test between 
post-movement rates (−0.05 to 0.2 s relative to movement onset) and 
baseline rate; (6) rank–sum test between post-reward rates (0 to 0.15 
s relative to reward delivery for correct NoGos) and baseline rates. A 
neuron was considered active during the task, or to have detectable 
modulation during some part of the task, if any of the P values on these 
tests were below a Bonferroni-corrected alpha value (0.05/6 = 0.0083). 
However, because the tests were coarse and would be relatively insensi-
tive to neurons with transient activity, a looser threshold was used to 
determine the neurons included for statistical analyses (Figs. 3–5): if 
any of the first four tests (that is, those concerning the period between 
stimulus onset and movement onset) had a P value less than 0.05.

In determining the neurons statistically significantly responding 
during different task conditions (Figs. 2d–h, right sub-panels, 5b), the 
mean firing rate in the post-stimulus window (0 to 0.25 s), taken across 
trials of the desired condition, was z-scored relative to trial-by-trial 
baseline rates (from the window −0.1 to 0) and taken as significant 
when this value was >4 or <−4, equivalent to a two-sided t-test at P < 10−4.

For visualizing firing rates (Extended Data Fig. 4), the activity of 
each neuron was then binned at 0.005 s, smoothed with a causal half-
Gaussian filter with standard deviation 0.02 s, averaged across tri-
als, smoothed with another causal half-Gaussian filter with standard 
deviation 0.03 s, baseline subtracted (baseline period −0.02 to 0 s 
relative to stimulus onset, including all trials in the task), and divided 
by baseline + 0.5 spikes s−1. Neurons were selected for display if they had 
a significant difference between firing rates on trials with both stimuli 
and movements versus trials with neither, using a sliding window 0.1 
s wide and in steps of 0.005 s (rank-sum P < 0.0001 for at least three 
consecutive bins).

Visual receptive fields (Extended Data Fig. 2d) were determined by 
sparse noise mapping outside the context of the behavioural task. The 
evoked rates for each presentation were measured as the spike count in 
the 200 ms following stimulus onset. The rates evoked by stimuli at the 
peak location and surrounding four nearest locations were combined 
and compared to the rates for all locations >45 d.v.a. from the peak loca-
tion using a Wilcoxon rank-sum test. Any neurons for which the p value 
of the test was less than 10−6 were counted as having a significant visual 
receptive field. Note that neurons are included in analyses regardless 

of receptive field location; in particular, recorded LGd neurons did not 
have receptive field locations overlapping with task stimuli.

Kernel regression analysis
To identify choice-selective neurons, we began by fitting a kernel-
regression model48–50. In this analysis, the firing rate of each neuron 
is described as a linear sum of temporal filters aligned to task events. 
For the current study, only visual stimulus onset and wheel movement 
onset kernels were required, since we consider here only the period in 
between the two. In the model, the predicted firing rate fn(t) for neuron 
n is given as
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Here, c represents the six stimulus types (contralateral low, medium, 
or high, or ipsilateral low, medium, or high), Sc represents the set of 
times for which this contrast appeared, and Kc,n(t) represents the Vision 
kernel function of this contrast for neuron n. M represents the set of 
movement times and Km,n(t) represents the Action kernel for neuron 
n; Dm represents direction of movement m (encoded as ± 1), and KD,n 
represents the Choice kernel for neuron n. The Vision kernels Kc,n(t) are 
supported over the window −0.05 to 0.4 s relative to stimulus onset, 
and the Action and Choice kernels are supported over the window 
−0.25 to 0.025 s relative to movement onset. Before estimating the 
kernels, the discretized firing rates fn(t) for each neuron were estimated 
by binning spikes into 0.005-s bins and then smoothing with a causal 
half-Gaussian filter with standard deviation 0.025 s. The Vision kernels 
therefore contain Lc = 90 time bins, whereas Action and Choice kernels 
contain Ld = 55 time bins.

The large number of parameters to be fit, combined with the rela-
tively small number of trials of each type pose a challenge for estima-
tion. We devised a solution to this problem that makes use of the large 
number of neurons recorded using reduced-rank regression (Extended 
Data Fig. 5b), which we found to give better cross-validated results 
(see next section).

First, for each kernel to be fit, we construct a Toeplitz predictor 
matrix (Extended Data Fig. 5d). For stimuli of contrast c, we define a 
Toeplitz predictor matrix Pc of size T × Lc, in which T is the total number 
of time points in the training set, and Lc is the number of lags required 
for the Vision kernels. The predictor matrix contains diagonal stripes 
starting each time a visual stimulus of contrast c is presented: Pc(t,i) = 1 
if t – i ∈ Sc and 0 otherwise. Predictor matrices of size T × Ld were defined 
similarly for the Action and Choice kernels, and the six stimulus predic-
tor matrices and two movement predictors are horizontally concat-
enated to yield a global prediction matrix P of size T × 650. The total 
length of all kernels for one neuron is 650 = 6Lc + 2Ld.

The simplest approach to fit the kernel shapes would be to minimize 
the squared error between true and predicted firing rate using linear 
regression. To do this, we would horizontally concatenate the rate 
vectors of all N neurons together into a T × N matrix F, and estimate 
the kernels for each neuron by finding a matrix K of size 650 × N to 
minimize the squared error E = ‖F – PK‖2, using the total sum square 
(Frobenius) norm. However, as each kn has 650 parameters, linear 
regression results in noisy and overfit kernels when fit to a single neu-
ron, particularly given the high trial-to-trial variability of neuronal 
firing. Although expressing the kernels as a sum of basis functions 
can reduce the number of required parameters48, the success of this 
method depends strongly on the choice of basis functions, and the 
appropriate choice will differ depending on properties of the task and 
stimuli. The large number of neurons in the current dataset enables an 
alternative approach.

This approach is based on reduced-rank regression51, which allows 
regularized estimation by factorizing the kernel matrix K into the prod-
uct of a 650 × r matrix B and a r × N matrix W, minimizing the total 



error: E = ‖F – PBW‖2. The T × r matrix PB may be considered as a set 
of temporal basis functions, which can be linearly combined to esti-
mate each neuron’s firing rate over the whole training set. Reduced 
rank regression ensures that these basis functions are ordered, so that 
predicting population activity from only the first r columns will result 
in the best possible prediction from any rank r matrix.

To estimate each neuron’s kernel functions, we estimated a weight 
vector wn to minimize an error En = |fn – PBwn|2 for each neuron with elas-
tic net regularization (using the package cvglmnet for Matlab (http://
www.stanford.edu/~hastie/glmnet_matlab/) with parameters α = 0.5 
and λ = 0.5), and used cross-validation to determine the optimal num-
ber of columns rn of PB to keep when predicting neuron n. The kernel 
functions for neuron n were then unpacked from the 650-dimensional 
vector obtained by multiplying the first rn columns of B by wn. Neurons 
with total cross-validated variance explained of <2% were excluded 
from analyses.

Comparison of reduced-rank model to alternative models
To demonstrate the validity of this reduced-rank kernel method, we 
compared its performance of the reduced-rank regression method to 
two alternative approaches to spike train prediction: (1) fitting regres-
sion to the Toeplitz predictor matrix directly, and (2) a model with 
raised cosine basis functions (Extended Data Fig. 5d).

The Toeplitz predictor matrix was the matrix P described above. 
The cosine predictor matrix was constructed similarly, but with each 
row containing a raised cosine of width 100  ms, and spaced by 25 ms. 
The cosine predictor matrix therefore contained Lc = 18 rows for each 
of the 6 contrasts, and Ld = 11 time rows for each movement kernel, for 
130 predictors in total (Extended Data Fig. 5d).

To evaluate the performance of these three methods, we fit regres-
sion weights with elastic net regression as described above, and evalu-
ated performance as the percentage of variance explained (fivefold 
cross-validation across trials). To compare models fairly, the number 
of columns included in the reduced-rank model was not allowed to 
vary per neuron as described above, but was instead fixed at n = 18 
components. The reduced-rank projection matrix B was not itself 
cross-validated. The reduced-rank method outperformed both other 
methods (Extended Data Fig. 5e)

To estimate the degree to which differing performance of the models 
arose from over- versus under-fitting, we computed the ‘proportion 
of overfit explained variance’ as

CV − CV
CV

train test

train

where CVtrain is the training-set variance explained and CVtest is the test-
set variance explained, thus quantifying the difference between the 
two (a measure of overfitting) relative to the total variance explained 
(Extended Data Fig. 5f).

Determining individual neuron selectivity
To assess the selectivity of individual neurons for each kernel, we used 
a nested approach. We first fit the activity of each neuron using the 
reduced-rank regression procedure above (including deriving a new 
basis set), but excluding the kernel to be tested. We subtracted this 
prediction from the raw data to yield residuals, representing aspects 
of the neuron’s activity not explainable from the other kernels. We then 
repeated the reduced-rank regression procedure one more time, using 
the residual firing rates as the independent variable, and using only the 
test kernel. The cross-validated quality of this fit determined the vari-
ance explainable only by the test kernel. If this variance explained was 
>2%, the neuron was deemed selective for that kernel and was included 
in Fig. 3d,e or Fig. 4b.

In principle, inaccuracies in the model fits from one kernel could leave 
variability to be explained by another correlated variable, resulting in 

false positives from this test. For instance, since motor actions are cor-
related with visual stimuli, activity related to task-unrelated movements 
(for example, as reported in ref. 17) could appear to be visually related 
activity if it was not accurately captured by the Action and Choice ker-
nels. However, we consider it unlikely that a significant proportion 
of the contralateral vision correlates reported here arise from such a 
confound, since the same argument should apply to ipsilateral vision 
correlates, and we found very little of such correlates (Extended Data 
Fig. 5g).

Another potential source of error is that neurons were chosen for 
inclusion in the analysis based on criteria that could relate to the results 
of the analysis. Specifically, one of the criteria by which a neuron could 
be included was the observation of significant differences between left 
and right choice trials (see above). However, our empirically estimated 
false discovery rate is very low (0.3%, Extended Data Fig. 5h), and it 
should not differ between brain regions. Thus, the observation that 
choice-selective neurons were not found in most brain regions studied 
is an internal control, showing that false discovery of neurons based on 
analysis inclusion criteria cannot account for our findings.

Estimation of false-positive rate for determining individual 
neuron selectivity with reduced-rank kernel regression
To choose the threshold for counting a neuron as selective, we searched 
for a value giving low false-positive error rates for choice selective neu-
rons. To estimate false-positive rates, we performed a shuffle analysis, 
relabelling each trial with a left or right choice with a randomly drawn 
choice from another left or right choice trial, without replacement. 
The analysis was then repeated from the start, including fitting the 
reduced-rank regression and the cross-validated nested model. We 
selected the threshold for counting a neuron as choice selective to 
ensure a low false-positive error rate as assessed with this measure 
(0.33%; Extended Data Fig. 5h).

Population decoding of task correlates
To perform population decoding (Fig. 4c; Extended Data Fig. 5g), we 
began with the residual firing rates produced as described above, pro-
duced by fitting without a test kernel. We then split trials in a binary 
fashion: trials that had versus those that did not have an ipsilateral 
stimulus; those having versus not having a contralateral stimulus; those 
haing versus not having any movement (either left or right); those hav-
ing left choice versus having right choice (considering only trials with 
one of the two). We identified a population coding direction encoding 
the difference between the two sets of trials, by fitting an L1-regularized 
logistic regression on data from training trials, using the period 0.05 
to 0.15 s relative to stimulus onset for Vision decoding, and the period 
−0.05 to 0 s relative to movement onset for Action or Choice decoding. 
We then predicted the binary category of test data by projecting firing 
rates from test set trials, from each time point during the trial, onto 
the weight vector of the logistic regression. Although it is in principle 
possible that these signals are encoded in a nonlinearly separable way, 
the robust predictions obtained suggest information can be read out 
linearly. The population decoding was taken as the difference between 
projections between test-set trials of each binary category. For Action 
decoding, where trials with left or right choices were compared to those 
with neither, a ‘movement onset time’ was chosen for trials without a 
movement randomly from the distribution of movement onset times 
on left and right choice trials.

To statistically compare decoding time course across areas, we took 
the population decoding score from each key area in each recording 
(n = 29 populations from frontal cortex including MOs, PL and MOp; 
n = 29 populations from midbrain including SCm, MRN, SNr and ZI; 
n = 5 striatum, CP), and normalized each so the mean across record-
ings within an area was 1 at choice time. We then performed a two-way 
ANOVA, with factors time relative to movement onset and area (frontal, 
midbrain and striatum). We found a significant effect of time on choice 

http://www.stanford.edu/%7ehastie/glmnet_matlab/
http://www.stanford.edu/%7ehastie/glmnet_matlab/


Article
decoding (50 d.f., F = 10.43, P < 10−71) but no significant effect of area (2 
d.f., F = 0.28, P > 0.05) and no significant interaction between time and 
area (100 d.f., F = 0.12, P > 0.05).

jPECC analysis
To perform jPECC analysis (Fig. 4d, Extended Data Fig. 8), we took 
spike counts of individual neurons from simultaneously recorded 
regions, assembling neurons from all regions within a group into one 
population vector per region group. The three region groups were: VIS: 
VISp, VISpm, VISl, VISrl, VISa, VISam; midbrain: SCm, MRN, ZI, SNr; and 
frontal: MOs, MOp, PL. One jPECC per pair of region groups was com-
puted per recording. Spikes were counted in 10-ms bins and smoothed 
with a half-Gaussian causal filter with 25-ms standard deviation, and 
normalized by dividing by baseline +1 spike s−1. Principal components 
analysis was then performed for each region group, across time points 
and trials to reduce population activity to ten dimensions. Trials were 
divided tenfold into training and test sets. Canonical correlation analy-
sis was performed on the training set PCs from each region group, L2 
regularized using λ = 0.5. The test-set PCs were projected onto the top 
canonical dimension, and the Pearson correlation coefficient was com-
puted between these projections across test-set trials. This process was 
repeated for each pair of time bins, creating a matrix of cross-validated 
correlation coefficients, with one entry per pair of time points relative 
to the event. When representing a single recording’s jPECC analysis, 
the statistical significance of these correlation coefficients was used 
to grey out non-significant regions (Extended Data Fig. 8b) but this 
value was not used in further analyses.

To quantify lead–lag relationships across recordings, an asymmetry 
index was computed by diagonally slicing the jPECC matrix from −50 to 
+50 ms relative to each time point. The average correlation coefficient 
across the left half of this slice (that is, the average along a vector from 
[t − 50,t + 50] to [t,t]) was subtracted from the right half of this slice 
(from [t,t] to [t + 50,t − 50]) to yield the asymmetry index for time point 
t. This index was computed for each time point t relative to events and 
the values across recordings were compared to 0 with a t-test.

Engagement index and pre-stimulus analyses
To statistically compare pre-trial firing rates between the task and 
passive conditions (that is, between trials of active task performance, 
versus later passive stimulus replay, Extended Data Fig. 9a), we per-
formed a nested multiple ANOVA test, in order to account for cor-
related variability between neurons within recording sessions. Each 
observation was a neuron’s average measured pre-trial firing rate in 
the window between 250 and 50 ms before stimulus onset, log trans-
formed (log10(x + 1 spike s−1)) to make distributions approximately 
normal. Any trials with detectable wheel movement in this interval 
were excluded. The ANOVA had three factors: active or passive condi-
tion, recording session, and neuron identity (nested within recording 
session). A separate ANOVA was performed for each brain region, and 
the null hypothesis of no difference between baseline rates in active and 
passive conditions for neurons from a given brain region was rejected if 
the P-value for the active/passive condition factor was less than 0.0012, 
that is, less than 0.05 after applying a Bonferroni correction for the 42 
brain regions tested.

To compute the trial-by-trial ‘engagement index’, we took the dif-
ference in pre-stimulus firing between the average of all task (‘active’) 
trials a and of all passive trials p, over the 200-ms period before stimulus 
onset:

x f t f t= (−0.2 < < 0) − (−0.2 < < 0)n n
a

n
p

This quantity was computed for each neuron in one of the areas with 
significant differences between task and passive determined by nested 
ANOVA analysis (319 ± 32.5 (mean ± s.e.m.) neurons included per ses-
sion, n = 34 sessions), accumulated into a vector x and normalized 

to unit L2 magnitude for each session. To compute the engagement 
index for each trial i we computed the dot product x·fi, where fi is the 
vector of pre-stimulus firing rates for each trial i. For the summary 
analysis in Fig. 5f, we then computed the mean across Go trials and the 
mean across Miss trials, and took the difference of the two. The Go and 
Miss trials included in this analysis were matched for contrast so that 
difference in visual drive could not influence the difference between 
trial types. To do this, N trials were selected from each contralateral 
contrast condition, where N was the minimum of the number of trials 
at that contrast condition having a Go outcome and the number hav-
ing a NoGo outcome.

Measurement of pupil area and video motion energy
We measured pupil area (Extended Data Fig. 9g, i, k) from the high-zoom 
videos of the subject’s eye, using DeepLabCut52. In approximately 200 
training frames randomly sampled across all sessions, 4 points spaced 
at 90° around the pupil were manually identified, and the network was 
trained with default parameters. Then, around 100 more frames were 
manually annotated focusing on frames with errors, and the network 
re-trained. The pupil area was taken to be the area of an ellipse with 
major and minor axis lengths given by the distances between oppo-
site pairs of detected points. Some recordings were excluded from 
these analyses owing to video quality that was unusable for sufficiently 
accurate measurement of the pupil (n = 5 out of 39), primarily owing to 
obscured pupils due to eyelashes or eyelids.

We measured video motion energy (Extended Data Fig. 9h, i, k) 
from the low-zoom videos of the frontal aspect of the subjects, which 
included the face, arms, and part of the torso of the mice. As nothing 
in the frame except the mouse could move, we calculated total motion 
energy of the pixels of the video as an index of overt movements of the 
mouse. This was computed as:

∑ i iabs( − )t t
pixels

−1

where it is the intensity of the pixel on frame t.
Both pupil area and video motion energy were z-scored before gen-

eralized linear model (GLM) fitting.

GLM prediction of P(Go) from pre-stimulus variables
To determine the impact of arousal-, reward- and history-related vari-
ables on the ability to predict whether the upcoming trial’s outcome 
would be a Go response (that is, a left or right choice), and whether 
these factors could account for the relationship between Engagement 
Index and Go/Miss trials, we fit a GLM model to several measures of 
overt behaviour (Extended Data Fig. 9). These behavioural variables 
were: inter-trial interval; previous trial reward outcome (coded as 0 
or 1); pupil area in the pre-stimulus window (z-scored); and motion 
energy in the pre-stimulus window (z-scored). A GLM with binomial 
link function was fit to these variables (Matlab function ‘fitglm’) 
to predict whether the following trial had a Go or NoGo outcome. 
Squared terms were included for pupil area and video motion energy 
after it was observed that the empirical relationship between each of 
these and the P(Go) had an inverted U-shape53. Trials were selected 
for the model fitting to have matched contrast between these two 
types (see Engagement index above). A deviance test was used to 
compare this model with a model that additionally had engagement 
index included as a predictor. A significant value of this test does 
not indicate that the engagement index suffices to predict P(Go), 
with other variables making no further contribution; rather, it indi-
cates that the other variables did not fully predict P(Go), and that 
engagement index can improve this prediction. The population vec-
tor analysis in Extended Data Fig. 9k further argues that engagement 
index relates to P(Go) more closely than does the population vector 
of these other variables.



Combined-conditions choice probability and detect probability 
analysis
Choice probability is a non-parametric measure of the difference in fir-
ing rate between trials with identical stimulus conditions but different 
choices. Typically, it is calculated separately for each stimulus condi-
tion, but here we used an algorithm that combines observations across 
stimulus conditions into one number, allowing it to be calculated even 
for our small number of trials per condition (since there are 16 stimulus 
conditions, and trials with NoGo responses are excluded for the choice 
probability calculation). Choice probability is classically calculated as 
the area under a receiver operating characteristic (ROC) curve, which 
is equivalent to a Mann–Whitney U statistic, that is, to the probability 
that a firing rate observation from the trials with one choice is greater 
than that from trials with the other choice. Accordingly, this can be 
calculated by comparing each trial of one condition to each of the other 
condition, counting the number of such comparisons for which the first 
condition wins, and dividing by the total number of comparisons. To 
extend the method to a situation of many stimulus conditions but few 
trials of each condition, we add the numerators and denominators of 
this ratio across all conditions, and then divide. In this way, the core 
logic of choice probability—that trials of one choice are only compared 
to trials of the other choice under identical stimulus conditions—is pre-
served, but all stimulus conditions can be combined into one number 
per neuron. This number quantifies the same thing as the classic choice 
probability, namely, the probability that the spike count of a neuron will 
be greater for trials of one choice than another, given matched stimulus 
conditions. To estimate statistical significance, we used a shuffle test 
in which trial labels (as left or right choice) were randomly permuted 
within each stimulus condition 2,000 times, and the choice probability 
was computed for each shuffle. Because this algorithm combines trials 
from multiple stimulus conditions into a single statistic, we refer to it 
as the combined-conditions choice probability (ccCP).

We used the same algorithm to compute a detect probability (DP) com-
paring trials with NoGo outcomes to those with either left or right choices.

Importantly, not all trials can be included in the ccCP analysis. Specifi-
cally, the trials from any stimulus condition in which the subject only 
made left or only made right choices cannot contribute to the ccCP. 
This is unlike the kernel regression analysis, in which those trials would 
still contribute to the estimates of the vision and choice kernels (and 
note that the kernel analysis additionally makes use of reaction time 
variability to separate these representations). As a result, six sessions 
had to be excluded for having fewer than ten trials include-able in the 
ccCP analysis. Notably, two of these six sessions contained some of 
the MOs neurons with significant choice representations under the 
kernel analysis, so that 20.8% of MOs choice-selective neurons were 
not included here.

Focality index
To statistically test the degree to which neurons encoding different task 
variables were localized, we used a focality index, defined as:

( )
( )

F
p

p
=

∑

∑

a

a

2

2

where pa is the proportion of neurons in an area selective for the task 
correlate of interest (action, contralateral vision or choice), as assessed 
by reduced-rank regression analysis (Fig. 3c, e, 4b). This measure is an 
adaptation of the sparseness measure of Treves and Rolls54, and would 
take the value 1 if all neurons were located in a single region, and the 
value 1/N if neurons were equally probable in N regions. Ninety-five per 
cent confidence intervals were computed using the bootstrap, with a 
normal approximated interval with bootstrapped bias and standard 
error (function bootci in Matlab).

Anatomical targeting
To select probe insertion trajectories, we first identified desired record-
ing sites, and then designed appropriate trajectories to reach them using 
the allen_ccf_npx gui (A. J. Peters, www.github.com/cortex-lab/allenCCF). 
In doing so, Allen CCF coordinate (5.4 mm AP, 0 DV, 5.7 LR) was taken as 
the location of bregma. Craniotomies were targeted accordingly and 
angles of insertion were set manually. For some of the visual cortex 
recordings, surface insertion coordinates were targeted based on prior 
widefield calcium imaging. Widefield imaging used techniques described 
previously44, during presentation of the sparse visual noise receptive field 
mapping stimulus described above. Responses to visual stimuli near the 
intended location of the task stimuli were combined and used to identify 
cortical locations with retinotopically aligned neurons. In some cases, 
these same imaging sessions were used to target MOp and SSp record-
ings to the area of large activity observed during forelimb movements 
that covers both of those areas41. Finally, MOs recordings were targeted 
at and around the cortical coordinates identified as disrupting task per-
formance when inactivated, around +2 mm AP, 1 mm ML41.

Histological probe localization
Recording sites were localized to brain regions by manual inspection 
of histologically identified recording tracks, in combination with align-
ment to the Allen Institute Common Coordinate Framework, as follows.

Mice were perfused with 4% paraformaldehyde, the brain was 
extracted and fixed for 24 h at 4 °C in paraformaldehyde, then trans-
ferred to 30% sucrose in PBS at 4 °C. The brain was mounted on a 
microtome in dry ice and sectioned at 60-µm slice thickness. Sections 
were washed in PBS, mounted on glass adhesion slides, and stained with 
DAPI (Vector Laboratories, H-1500). Images were taken at 4× magnifica-
tion for each section using a Zeiss AxioScan, in three colours: blue for 
DAPI, green for GCaMP (when present), and red for DiI.

An individual DiI track was typically visible across multiple slices, 
and recording locations along the track were manually identified by 
comparing structural aspects of the histological slice with features in 
the atlas. In most cases, this identification was aided by reconstruc-
tion of the track in Allen CCF coordinates. To achieve this, we used the 
following procedure.

First, we manually identified the 3D locations within the Allen Com-
mon Coordinate Framework of each observed DiI spot on each slice 
(15.1 ± 6.9 such spots per probe, Extended Data Fig. 2a). Code for doing 
this is provided open-source (https://github.com/cortex-lab/allenCCF; 
in particular, ‘sharp-track’55). There was no ambiguity about which dye 
stain corresponded to which penetration, as penetrations were not 
repeated within a subject.

After identifying 3D points along a probe penetration, we fit a line 
to those points, which represents an estimate of the probe trajectory 
based on all DiI spots (Extended Data Fig. 2b). We quantified the lateral 
localization error by the median distance of the DiI spots from this 
common trajectory (39.3 µm) as a quantitative estimate of the error 
of step no. 1. Though this error is already small, the fitting of a line to 
many points presumably further reduces the error, resulting in a reli-
able estimate of the probe’s vector through the brain. Moreover, the 
predicted set of brain regions that this vector passes through can be 
directly verified by histological inspection (Extended Data Fig. 3). On 
completion of this step, the method therefore provides an estimate of 
the probe trajectory through the 3D atlas, but does not yet provide a 
mapping from each recording site to a location along this trajectory.

Next, we found the longitudinal mapping from recording sites to 
the probe trajectory. While the tip location provides one number that 
can identify the offset, it cannot estimate scaling that may vary owing 
to shrinkage. We therefore adopted an alternative approach that uses 
multiple electrophysiological landmarks to estimate scaling and depth 
on a brain-by-brain basis. These landmarks consist of thin structures 
such as the CA1 pyramidal layer, or white matter boundaries, which are 

http://www.github.com/cortex-lab/allenCCF
https://github.com/cortex-lab/allenCCF
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unambiguously identifiable in spike rasters. Behavioural task correlates 
and visual receptive fields were not considered during this alignment 
procedure. We found the offset and scaling of a linear relationship 
between recording site number and distance along the probe trajectory 
by linear regression of these multiple landmarks. We show an example 
of this process (Extended Data Fig. 2c–e), in which six landmarks are 
used to find the appropriate depth and scaling (1.01 in this case, and 
across all recordings 1.08 ± 0.02 (mean ± s.d.)). We found the shrinkage 
factor of our fixed tissue relative to the atlas to be 8% on average, but 
estimated it on a brain-by-brain basis when aligning electrode tracks.

Finally, we quantitatively estimated the accuracy of this longitudi-
nal alignment procedure by taking advantage of the fact there were 
more points constraining the alignment than there are parameters. 
To estimate alignment errors, we used a cross-validation approach: 
we fit the longitudinal mapping using all landmarks except one, and 
estimated how far the predicted location of this held-out landmark 
is from its true location (Extended Data Fig. 2f). We found that the 
median absolute deviation of these errors was 88.7 µm, comparable to 
the width of the probe shank itself (70 µm), that is, near the resolution 
limits of the method.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The behavioural and neural datasets generated and analysed in this 
study are available as downloadable files at https://figshare.com/arti-
cles/steinmetz/9598406 and via the Open Neurophysiology Environ-
ment interface at https://figshare.com/articles/steinmetz/9974357.

Code availability
The code used to analyse the data are available at https://github.com/
nsteinme/steinmetz-et-al-2019.
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Extended Data Fig. 1 | Behavioural performance as psychometric curves for 
each subject, and analysis of wheel movements. a, Psychometric curves for 
mouse Cori, showing the probability of choosing left (blue), right (orange) or 
NoGo (black) as a function of stimulus contrasts on the left and right screens. 
Each row corresponds to a pedestal contrast (the minimum contrast on the left 
and right screens). The horizontal axis encodes the relative contrast from the 
pedestal value, positive numbers indicating higher contrast on the right 
screen, and negative numbers for higher contrast on the left screen (for 
example, at pedestal = 50%, a ΔContrast of +50% corresponds to trials with 50% 
contrast on the left screen and 100% contrast on the right screen). Dots and 
vertical lines indicate the empirical fraction of choices made and 95% binomial 
confidence intervals for the fraction estimate, pooling data over sessions. 
Curves indicate the fit of a multinomial logistic model: b s cln = +p Left

p NoGo L L
( )

( ) L
n; 

b s cln = +p Right
p NoGo R R

( )
( ) R

n, in which cL and cR are the contrast on the left and right, and 
parameters bL, sL, n, bR and sR are fit by maximum likelihood estimation to the 
data for each subject3. b–j, As in a, for the remaining subjects. k, The model fit 
for all subjects overlaid, for left choices (blue) and right choices (orange), in 
both cases for pedestal = 0%. l, Summary of performance on high-contrast 

trials. Dots reflect the session-pooled proportion correct of each mouse for 
trials with 100% versus 0% contrast, with 95% binomial confidence interval. m, 
Example segment of wheel position data showing wheel movements detected 
as left turns (blue), right turns (orange) or incidental movements (black). 
Detected onsets (green circles) and offsets (red circles) marked for each 
movement. y-axis scale: distance moved at the circumference of the wheel (that 
is, 2πRθ, in which R is wheel radius and θ is its angular position). n, Wheel 
velocity trace for the same segment of data as in a. o, Example wheel turns 
aligned to the detected onset time. The dashed box indicates the region 
expanded in p. p, Example wheel turns aligned to detected onset time, zoomed 
to show the moment of takeoff, illustrating that the wheel had moved by less 
than 0.5 mm by onset. The step-like appearance of the trace reflects the 
resolution of the rotary encoder (each step unit is 0.135 mm at the surface of 
the wheel). q, Decoding the eventual direction of the wheel movement using 
the instantaneous velocity at different times relative to detected movement 
onset reveals that the direction only starts to be decodable around 20 ms 
before detected onset, and is not reliably (>80%) decoded until the time of 
onset. Error bars represent s.d. across sessions (n = 39).



Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Method for histological alignment. a, Before insertion, 
probes were coated with DiI. The brain was sliced and imaged, and locations of 
each probe’s DiI spots were manually identified on the Allen CCF atlas (15.1 ± 6.9 
spots per probe). When multiple penetrations were performed in a single brain, 
their tracks were sufficiently far apart to avoid confusion. b, A vector is fit to the 
probe track using total least squares linear regression. The median distance of 
individual points from this vector is 39.3 µm, providing an estimate of lateral 
displacement error. c, To fit the longitudinal mapping from recording sites to 
brain locations, we used landmarks that were easily detectable by their 
electrophysiological signatures (arrows, left), linearly interpolating the 
location of sites between these landmarks. d, Visual receptive fields served as a 
post hoc check on correct alignment, but were not used to estimate track 
location. Each horizontally elongated plot with two vertical black lines 

indicates the responsiveness of all spikes recorded in an 80-µm-depth bin to 
flashed white squares at varying locations on the three screens (see Methods, 
Receptive field mapping). Colour map indicates spike rate, independently 
scaled for each map. e, Areas assigned for each recording site. Right, example 
DiI traces in slices corresponding to these locations. f, Example of cross-
validation procedure to assess error in longitudinal alignment. For each point, 
the longitudinal mapping was recomputed excluding this point, and the 
distance from this point to the mapping fit to other points provides an estimate 
of longitudinal alignment error. Brain diagrams were derived from the Allen 
Mouse Brain Common Coordinate Framework (v.3 (2017); downloaded from 
http://download.alleninstitute.org/informatics-archive/current-release/
mouse_ccf/).

http://download.alleninstitute.org/informatics-archive/current-release/mouse_ccf/
http://download.alleninstitute.org/informatics-archive/current-release/mouse_ccf/


Extended Data Fig. 3 | Examples of DiI tracks showing recording sites from 
the depicted sub-surface brain regions in aligned histology. Visual 
inspection of the DiI tracks confirms that the probe indeed passed through 
that region at some point along the recording span. Thick white lines outline 
the region given in the plot title; grey lines outline other regions; and white 

arrows point to places where probe tracks were found within the given region. 
Blue: DAPI; green: GCaMP; red: DiI. Brain diagrams were derived from the Allen 
Mouse Brain Common Coordinate Framework (v.3 (2017); downloaded from 
http://download.alleninstitute.org/informatics-archive/current-release/
mouse_ccf/).

http://download.alleninstitute.org/informatics-archive/current-release/mouse_ccf/
http://download.alleninstitute.org/informatics-archive/current-release/mouse_ccf/
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Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | Global neuronal activity and distribution. a, Activity 
of example neurons in VISp and VISam, showing the neuron’s waveform and 
anatomical location (top), rasters sorted by contralateral contrast (middle), 
and trial-averaged firing rates (smoothed with 30 ms causal half-Gaussian) for 
each of the four contralateral contrasts (bottom). Shaded regions show the 
s.e.m. across trials. b, Colour map showing trial-averaged firing rates of all 
highly activated neurons (P < 10−4 compared with pre-trial activity), vertically 
sorted by firing latency. Latency sorting was cross-validated: latencies for each 
neuron were determined from odd-numbered trials, and activity from even-
numbered trials is depicted in the plot. The grey scale represents average 
normalized firing rate across even-numbered trials with contralateral visual 
stimuli and contralateral choice. c–e, Curves showing mean firing rate across 
responsive neurons in each area, aligned to visual stimulus onset (c), 
movement onset (d) or reward onset (e). Trials were included in e when a reward 

was earned for keeping the wheel still following zero-contrast stimuli. Shaded 
regions show the s.e.m. across neurons. f, The focality index, defined as 

( )p p∑ / ∑ ( )a
2

a
2 , in which pa is the proportion of neurons in area a selective for the 

kernel in question, measures how widely versus focally distributed a 
representation is, with a floor of 0.0238 for a uniform distribution (across 42 
brain regions) and a maximum of 1.0 if all selective neurons were found in a 
single brain region. This focality index was 0.079 for Choice, 0.069 for Vision 
kernels and 0.040 for Action kernels; the differences between Choice and 
Action, as well as contralateral Vision and Action, were statistically significant 
(P < 0.05; bias-corrected bootstrap). Dots represent the true value and error 
bars represent bias-corrected bootstrap-estimated 95% confidence intervals. 
Brain diagrams were derived from the Allen Mouse Brain Common Coordinate 
Framework (v.3 (2017); downloaded from http://download.alleninstitute.org/
informatics-archive/current-release/mouse_ccf/).

http://download.alleninstitute.org/informatics-archive/current-release/mouse_ccf/
http://download.alleninstitute.org/informatics-archive/current-release/mouse_ccf/
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | Comparison of the reduced-rank kernel regression 
method to other methods for spike train prediction. a, Example fit of spiking 
data for an individual neuron with the kernel model. Green trace shows spike 
data smoothed with a causal filter, black shows the model’s prediction, and 
other coloured traces show the components of the prediction from each 
kernel. Data between trials is omitted from the fitting and from this plot.  
b, Cartoon of the three methods evaluated. In the Toeplitz and Cosine models, a 
predictor matrix X of size Ntimepoints × Npredictors is constructed from task events 
(illustrated, transposed, in d). A linear fit from predictors X to spike counts Y is 
estimated using elastic net regularization. In the reduced-rank regression 
method, the predictor matrix X is the same as the Toeplitz model, but predicts 
Y after passing through a low-rank bottleneck (X·b), which is optimized using 
reduced-rank regression. c, Relationship between Action and Choice kernels, 
which are added or subtracted together to give the shapes for left and right 
choice trials. This allows separation of neurons with choice from action 
correlates, while still allowing for arbitrary-shaped responses on left and right 
trials. d, Structure of predictor matrices (shown transposed). The Toeplitz 
predictor has rows for each variable and time offset, which take non-zero values 
for time points (columns) corresponding to the appropriate time offset from 
the given event. The cosine model has similar structure but with rows replaced 
by smooth raised cosine functions, allowing a smaller number of basis 

functions. The reduced-rank regression model has learned a small number of 
dense basis functions optimized to predict spike counts. e, Density scatterplot 
of cross-validated variance explained for each neuron under the Toeplitz 
model against the reduced-rank model (top), and for the cosine model versus 
the reduced-rank model (bottom). Each point represents one cell, coloured to 
show density when they overlap. Right, magnified view of the densest region of 
the plot. These comparisons show that the reduced-rank model consistently 
outperforms the other two (points lie below the diagonal), and that it overfits 
fewer neurons (fewer points with CV variance explained <0). f, The proportion 
of overfit-explained variance, that is, (CVtrain − CVtest)/CVtrain, in which CVtrain is 
the train-set variance explained and CVtest is the test-set variance explained. 
Smaller values for the reduced-rank model show that it overfits less. g, Left, 
population decoding of contralateral visual stimulus contrast from residual 
population activity in each area after subtracting the prediction of a model 
including all other kernels. The other panels depict the same analysis for 
decoding of ipsilateral visual stimulus contrast, action and direction of choice. 
h, Distributions of the cross-validated proportion variance explained for each 
neuron when shuffling left and right trial choice labels (orange) together with 
the distribution for the original data (blue). After shuffling, a small number (14, 
0.33%) of neurons are false positives by this threshold. The dashed line 
represents the 2% CV variance explained threshold used. The y axis is clipped.
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Extended Data Fig. 6 | See next page for caption.



Extended Data Fig. 6 | Summary of variance explained by the kernel model 
and population average responses on Go, Miss, and Passive trials. a, The 
unique contribution of each predictor variable as assessed by nested 
prediction. Each panel depicts the distribution of variance explained across 
neurons of a single brain region, using various reduced-rank kernel regression 
models, (compare with Figs. 3c, e, 4b). Each bar shows the 10th, 25th, 50th, 75th 
and 90th percentiles of the distribution for a single prediction model, colour-
coded by model identity. The numbers in the subplot title indicate the number 
of all neurons analysed with the full model (that is, the distribution shown with 
the grey bar), and the number of neurons included for nested model analysis 
(that is, cells with ≥2% variance explained with the full model). The black bar 
shows distribution of variance explained by the full model in this subset; 
coloured bars show the unique contribution of each predictor. Note that the 

unique contributions need not sum to the variance of the full model, as 
predictor variables are correlated. Variance explained by the Action kernel 
(yellow) is essentially global, whereas contralateral Vision variance explained is 
distinctly restricted, and Choice is rare enough to be difficult to see in these 
plots. b, Population average firing rates across neurons for each brain region in 
Go, Miss, and passive trials, selected to have matched contralateral visual 
stimulus contrasts. The patterns characteristic of engagement can be seen in 
pre-stimulus activity (that is, before time 0): the pre-stimulus firing rate of 
midbrain, basal ganglia, and hippocampal regions is in the order Go > Miss > 
passive; whereas pre-stimulus activity in neocortical areas instead is arranged 
as passive > Miss and Go. Thalamic regions can exhibit either pattern; notably, 
visual thalamic regions (LGd, LP and LD) follow the pattern of neocortical areas.
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Extended Data Fig. 7 | See next page for caption.



Extended Data Fig. 7 | Choice probability and detect probability analysis. a, 
The percentage of neurons with significant ccCP (that is, neurons whose rate 
differed significantly between left and right choices in response to the same 
stimulus; left two columns) and ccDP (that is, neurons whose rate differed 
significantly between Go and NoGo trials in response to the same stimulus; 
right two columns) as a function of time aligned to visual stimulus onset (left) 
and movement onset (right). The horizontal dashed line represents the value 
expected by chance given the statistical threshold alpha = 0.05. b, Percentage 
of neurons in each area with significant detect probability between −50 and 
+50 ms from movement onset, replicating the finding from Fig. 2d, e, 3e that 
non-selective action signals are distributed widely. Asterisks indicate brain 
regions for which 95% confidence intervals for the percentage of significant 
neurons (black error bars) did not include the chance value (5%, horizontal 
dashed line). c, As in b, for choice probability in the same window. The number 
of trials usable in this analysis is limited, meaning that some sessions (n = 6 of 
39) had to be excluded; nevertheless, this analysis broadly replicates the 
finding from Fig. 4b that around the time of movement onset, choice-selective 
neurons are restricted to frontal cortex, basal ganglia, midbrain and certain 
thalamic nuclei. d, As in a, for choice probability in a window +150 to 250 ms 

after movement onset, showing that by this time choice-related signals are 
distributed more widely, including visual and parietal cortex. These signals are 
too late to have participated in generating the choice but could reflect either 
corollary discharge or sensory reafference. However, they cannot reflect 
movement of the visual stimulus on the screen, as it is fixed during this time 
period. e, The percentage of neurons with significant choice probability, as a 
function of time relative to movement onset for selected areas (zoom and 
overlay of certain traces from a), replicating that choice related activity is first 
seen in the final 50–100 ms relative to movement onset and with similar timing 
across multiple areas. Note that six sessions were excluded from ccCP analysis 
for having too few trials; these six sessions included 20.8% of the MOs neurons 
determined to have choice-selective responses with kernel regression. f, The 
pre-stimulus detect probability (after subtracting 0.5, so that positive values 
indicate higher rates on Go trials, and negative values the reverse) versus the 
mean Go − Miss firing rate difference for each area (used in Fig. 5d), 
demonstrating that these two quantities identify essentially the same factor. 
The pre-stimulus detect probability was correlated with the engagement index 
(that is, task − passive difference) similarly to the Go − Miss difference (with 
r = 0.48, P = 0.001; not shown).
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Extended Data Fig. 8 | See next page for caption.



Extended Data Fig. 8 | jPECC analysis for determining whether correlations 
occur with a temporal offset between a pair of regions. a, Canonical 
correlation analysis is applied to firing rates at every pair of time points relative 
to a behavioural event (illustration shows 0.1 s after stimulus onset in VISp and 
0.15 s after in MOs). Canonical correlation analysis is applied to the pair of 
matrices containing each cell’s firing rate at selected times on each training set 
trial (90% of the total) to find dimensions in each population maximally 
correlated with each other. (For regularization purposes, this is applied after 
dimensionality reduction using principal component analysis). The strength of 
population correlation is summarized by the correlation of test set activity 
projected onto the first canonical dimension. b, Results on an example session, 
showing relationships between visual cortex, midbrain and frontal cortex 

relative to stimulus onset (top) and movement onset (bottom). Visual cortical 
activity leads frontal and midbrain activity, as can be seen from the below-
diagonal bias in correlations. However, no lead/lag relationship is seen 
between midbrain and frontal cortex. Grey, P > 0.05. c, Average across all 
recording sessions that contained each pair of areas, showing similar 
relationships to the example in each case. d, e, Summary of lead–lag 
interactions, obtained by subtracting the averages of the jPECC coefficients 
over inter-area time ranges of −50 to 0 and 0 to 50 ms, as a function of time 
relative to stimulus onset (d) or movement onset (e). Grey region, 2 × s.e.m. 
across experiments. Visual cortex reliably leads frontal cortex and midbrain at 
around 100 ms after the stimulus; and over a range −200 to −50 ms relative to 
movement.
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Extended Data Figure 9 | See next page for caption.



Extended Data Figure 9 | Statistical analysis of engagement index and 
influence of alertness-, reward- and history-related variables on pre-
stimulus firing rates. a, A nested ANOVA with factors of session and subject 
was used to assess statistical significance of pre-stimulus task-passive firing 
rate differences (here normalized, unlike Fig. 5c, d and Extended Data Fig. 6b, 
to meet statistical assumptions) in each brain region (see Methods). All non-
neocortical regions that showed a significant difference between engaged task 
and passive states had higher mean pre-stimulus firing rates in task context, 
except for visual thalamus. All neocortical regions that showed a significant 
difference between task and passive contexts had lower mean pre-stimulus 
firing rates in the task context. b, An engagement index was computed for each 
task trial by projecting pre-stimulus population activity onto the vector of 
differences between pre-stimulus activity in task and passive contexts. Task 
trials with lower engagement index therefore showed a pattern of pre-stimulus 
population activity more similar to the passive context. Histogram shows the 
distributions of this index over contrast-matched Miss and Go trials; P value 
computed by t-test. c–f, Same plot after restricting to contrast-matched trials 
following rewards (c), after removing the reward effect by partial regression 
(that is, by subtracting the mean within trials of each previous reward 
condition) (d), after restricting to contrast-matched trials following short inter-
trial intervals (e) or after restricting to contrast-matched trials following long 
inter-trial intervals (f). The effect persists in each case. g, Histogram of pupil 
areas in the pre-stimulus period after previous trials that were rewarded or non-
rewarded, showing the expected effect of reward on arousal as a positive 
control for the validity of pupil diameter measurements. h, To initiate the next 
trial, subjects must hold the wheel still for 500 ms; video analysis shows that 
they reduce other movements as well. Top, total video motion energy (mean-
square frame difference) as a function of time relative to stimulus onset, on 

each trial, for an example recording. Bottom, mean motion energy across these 
trials overlaid (red-shaded region represents s.e.m. across trials). Inset, 
example frame from video monitoring the face and forelegs of the mouse.  
i, Results of a logistic GLM predicting the probability of a Go response on the 
subsequent trial from each of the given variables; plot format as in Fig. 5e. The 
null hypothesis that engagement index had no additional effect on Go 
probability over all other variables was rejected using a deviance test 
(P = 1.5 × 10−8). Each panel’s curve shows effect of one individual variable on Go 
probability. Red points, mean Go probability averaged over a bin; red error 
bars, 95% confidence interval; black line, fit of GLM, setting all other variables 
to their mean; grey shading, 95% confidence interval. j, Average Go probability 
and GLM fit as a function of engagement index (x axis), and previous trial 
reward (colour). Correlation of P(Go) from engagement index persists despite 
the additional effect of previous trial’s reward. k, To additionally test whether 
engagement index more specifically relates to P(Go) than any other variable, 
we asked whether the engagement vector (that is, the mean difference in pre-
stimulus population activity between task and passive contexts) matches the 
population vector encoding differences before Go and Miss trials, better than 
it does differences in other behavioural variables. To do so, we computed the 
Pearson correlation between the engagement vector and the Go–Miss vector 
for each recording. This correlation coefficient can be interpreted as the 
cosine of the angle between the two vectors in Nneurons dimensional space. Each 
panel shows a scatter plot, with one dot per recording, comparing this 
correlation against the engagement vector’s correlation with vectors defined 
for each other behavioural variable. In each case we find that the correlation is 
greater for the Go–Miss vector (not reaching significance at alpha = 0.05 level, 
however, for the comparison with the previous reward vector, P = 0.096).
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